三角函数诱导公式推导

 我来答
大沈他次苹0B
2022-05-29 · TA获得超过7349个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部

三角函数诱导公式:所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。下面就和我一起了解一下吧,供大家参考。

三角函数诱导公式有什么

公式一:任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式四:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

三角函数诱导公式推导过程

万能公式推导

sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

(因为cos2(α)+sin2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]

上下同除以cos3(α),得:

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)=3sinα-4sin3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=[2cos2(α)-1]cosα-2cosαsin2(α)=2cos3(α)-cosα+[2cosα-2cos3(α)]=4cos3(α)-3cosα

即:

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

和差化积公式推导

首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb

同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2

同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb

同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2

这样,我们就得到了积化和差的公式:cosasinb=[sin(a+b)-sin(a-b)]/2;sinasinb=-[cos(a+b)-cos(a-b)]/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式;

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式