求不定积分∫1/(x^4*√(1+x^2))dx

 我来答
世纪网络17
2022-05-11 · TA获得超过5952个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
x=tant,dx=(sect)^2dt
原积分=S1/((tant)^4*sect)*(sec)^2dt
=Scost^3/sint^4 dt
=S(1-sint^2)/sint^4d(sint)
=S(1/sint^4)dsint-1/sint^2)dsint
=-1/3*(sint)^(-3)+1/sint+c
=-1/3*(x/√(x^2+1))^(-3)+√(x^2+1) /x +c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式