已知函数f(x)=ax^3 - 3x+1(x属于R),若对于任意x属于【- 1,1】,都有f(x)>=0成立,则实数a的值为多少

求解题的步骤,要详细点哦,呵呵。谢了答案为4最好用导数解决... 求解题的步骤,要详细点哦,呵呵。谢了 答案为4
最好用导数解决
展开
deya108
2010-09-16 · TA获得超过1087个赞
知道小有建树答主
回答量:108
采纳率:0%
帮助的人:177万
展开全部
解:若对于任意x属于【- 1,1】,都有f(x)>=0成立,则f(x)的最小值>=0,要求最值,就需要知道函增减关系,对函数f(x)求导,f’(x)=3ax^2-3,f’(x)=0时取极值,3ax^2-3=0,得x=±1/根号下a(a>0易证,将x=1带入函数得a-2≥0)
当1≤x≤0时,x=-1/根号下a有极值,
-1≤x≤-1/根号下a时f’(x)=3ax^2-3>0,函数递增,
0≥x≥-1/根号下a时f’(x)=3ax^2-3<0,函数递减,
说明x=-1/根号下a有极大值,f(x)在x=-1和x=0时取小值,f(0)=1≥0
f(-1)=4-a≥0,得a≤4.

当1≥x≥0是,x=1/根号下a有极值,
0≤x≤1/根号下a时f’(x)=3ax^2-3<0,函数递减,
1≥x≥1/根号下a时f’(x)=3ax^2-3>0,函数递增,
说明x=1/根号下a有极小值,代入函数得f(1/根号下a)=1/根号下a-3/根号下a+1≥0,
得a≥4;
综合整个定义域,a=4。
买昭懿007
2010-09-15 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160771
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
已知函数f(x)=ax^3 - 3x+1(x属于R),对于任意x属于【- 1,1】,都有f(x)>=0成立

(一)当x=0时,f(x)=ax^3-3x+1=a*0-3*0+1=1≥0,即a取任何值f(x)=1恒大于0

(二)当-1≤x<0时
由f(x)=ax^3-3x+1≥0,ax^3≥3x-1,a≤3/x^2-1/x^3
在[-1,0)区间,“3/x^2”是递增的,“-1/x^3”也是递增的,所以“3/x^2-1/x^3”也是递增的
所以当x=-1时,3/x^2-1/x^3=3/(-1)^2-1/(-1)^3=3-(-1)=4为最小值
所以a≤4

(三)当0<x≤1时
由f(x)=ax^3-3x+1≥0,ax^3≥3x-1,a≥3/x^2-1/x^3
在(0,1]区间,“3/x^2”递减,“-1/x^3”递增,不能用单调性找出最大值
由f(x)=ax^3-3x+1≥0,ax^3≥3x-1
a≥3/x^2-1/x^3=1/x^2*(3-1/x)
根据ai≥0,(a1+a2+…+an)/n≥n次根号(a1a2......an)
3=1/(2x)+1/(2x)+(3-1/x)≥3次根号[1/(4x)^2*(3-1/x) ]
(当且仅当1/(2x)=3-1/x,x=3/8时取等号)
得:1/x^2*(3-1/x)≤4, 即1/x^2*(3-1/x)的最大值是4,
所以a≥4

综上,只有a=4时才能使f(x)≥0总成立

参考资料: http://zhidao.baidu.com/question/92423298.html?si=4

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友75eb6ef
2010-09-15 · TA获得超过206个赞
知道小有建树答主
回答量:322
采纳率:0%
帮助的人:223万
展开全部
f(-1)=4-a >=0 a<=4
f(1/2)=a/8-1/2 >=0 a>=4
特殊点法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式