计算:8(72+1)(74+1)(78+1)(716+1)(732+1).?
1个回答
展开全部
解题思路:根据代数式的性质:乘以(7-1),在除以6结果不变,可化成平方差的形式,根据平方差公式,可得答案.
原式=
(7+1)(7−1)(72+1)
6•(74+1)(716+1)(78+1)
=[1/6](72-1)(72+1)(74+1)(78+1)(716+1)(732+1)
=[1/6](74-1))(74+1)(78+1)(716+1)(732+1)
=[1/6](78-1)(78+1)(716+1)(732+1)
=[1/6](716-1)(716+1)(732+1)
=[1/6](732-1)(732+1)
=[1/6](764-1).
,6,
原式=
(7+1)(7−1)(72+1)
6•(74+1)(716+1)(78+1)
=[1/6](72-1)(72+1)(74+1)(78+1)(716+1)(732+1)
=[1/6](74-1))(74+1)(78+1)(716+1)(732+1)
=[1/6](78-1)(78+1)(716+1)(732+1)
=[1/6](716-1)(716+1)(732+1)
=[1/6](732-1)(732+1)
=[1/6](764-1).
,6,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询