怎么区别一阶微分方程,一阶线性微分方程,二阶齐次线性微分方程
1个回答
展开全部
区别一阶微分方程,一阶线性微分方程,二阶齐次线性微分方程从它的性质,方程式区分。形如y'=f(y/x)的方程称为齐次方程,这里是指方程中每一项关于x、y的次数都是相等的,例如x^2,xy,y^2都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是齐次方程。形如y''+py'+qy=0的方程称为齐次线性方程,这里齐次是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),线性则表示导数之间是线性运算(简单地说就是各阶导数之间的只能加减),比如方程y''+py'+qy=x就不是齐次的,因为方程右边的项x不含y及y的导数,是关于y,y',y'',……的0次项,因而就要称为非齐次线性方程,方程yy'=1也不是,因为它首先不是线性的。微分方程的阶是指方程出现的最高阶导数的阶,比如y''+py'+qy=0出现最高阶导数是y'',它的阶是2阶。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询