怎样运用SPSS进行聚类分析?

 我来答
SPSSAU
2023-06-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

怎样进行聚类分析?

聚类分析用于将样本进行分类处理,通常是以定量数据作为分类标准;用户可自行设置聚类数量,如果不进行设置,系统会提供默认建议;通常情况下,建议用户设置聚类数量介于3~6个之间。

如何进行聚类分析呢?

以SPSSAU为例。

采用著名的鸢尾花iris数据集,按鸢尾花的三个类别(刚毛,变色,佛吉尼亚),每一类50株,共测得150株鸢尾花的花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性数据。

在“进阶方法”栏目下,选择“聚类”,花瓣、花萼长宽这4个连续型变量拖拽至【定量分析项】框内,作为K均值聚类的依据。

鸢尾花已知有3个类型,因此K值=3,SPSSAU聚类个数默认即为3类,默认即可。对于聚类过程,不同指标单位量纲有区别,因此建议做标准化处理,默认勾选【标准化】。同时,我们希望聚类结束后,能将聚类的类变量作为结果保存下来,因此默认勾选【保存类别】。

如上操作,可见SPSSAU做K均值聚类整个参数选项的设定过程极为简要明了,只需要有一点统计基础即可操作。

关于K均值聚类的K值,并不一定必须已知,我们可以采取遍历的形式,譬如说在3-6类之间进行遍历,即依次选择聚为3类、4类、5类、6类,然后对聚类结果进行比较,选择最佳结果即可。

就聚类分析而言,通常情况下,建议用户设置聚类数量介于2~6个之间,不宜过多。指定K值后,算法会从数据集中随机化选择一个个案的数据作为初始聚类中心,即K个类的中心点坐标。

随后计算其他个案所代表的点与初始聚类中心点的距离,并按距离远近进行分配,每完成一次分配,聚类中心都将重新计算,因此聚类中心处于变化中,这个过程不断重复,直到聚类中心点不再变化为止,此时距离数据产生的误差平方和SSE应为最小。

K均值的聚类过程,全部会有SPSSAU计算完成。我们了解基础后,直接来读取它输出的结果即可。

首先来看聚类后各类的规模,本例即看三类中各类群体包含的鸢尾花株数。

如上表所示,cluster1包含56株、cluster2包含44株、cluster3包含50株,个案比例依次为37.3%、29.3%和33.3%。该数据集已知每类含同类鸢尾花50株,现在K均值聚类结果仅有cluster3含50株,其他两类的规模与50株有微小差异,初步看聚类的准确率还是不错的。SPSSAU还为类规模表配置了一个饼图进行可视化展示,如下:

前面我们通俗介绍了K均值的聚类过程,提到初始聚类中心,在迭代过程中最后会成为最终聚类中心点,这个结果SPSSAU也为大家提供了。见下表。

表格中的属性数据是标准化后的数据,如果我们想使用最终聚类中心的话,需要转换为原始数据。对我们来说,比较重要的是该表下方备注的误差平方和SSE值,如果我们采取的是遍历聚类结果的方案,那么方案之间孰优孰劣,可以比较SSE的大小,更小的SSE表明聚类效果更佳。

聚类命名

现在我们思考一个问题,前面用于聚类的4个属性,即花瓣、花萼长宽数据,对于当前的K均值聚类结果来说,3个不同类之间花瓣、花萼长宽是否存在差异呢?或者说,各类在4个属性上有何特征?如果给每个类起个名字,我们的依据是什么?

为了探索出各个类别的具体特征,因而使用方差分析去研究各个类别群体的差异性,最终可结合各个类别特征进行类别命名。

上表即方差分析表,由此可知:聚类类别群体对于所有参与聚类的指标变量均呈现出显著性(p<0.05),意味着聚类分析得到的3类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。

根据方差分析表中各类在4个属性上的均值表现,结合前面我们用箱线图对已知三种鸢尾花特征的探查,初步命名cluster3为刚毛鸢尾花类,cluster2为佛吉尼亚鸢尾花类,而cluster1为变色鸢尾花类。

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
见佛有真如c
高粉答主

2022-08-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:4743
采纳率:100%
帮助的人:92.2万
展开全部

步骤如下:

操作设备:戴尔电脑

操作系统:win10

1、首先通过快捷方式打开SPSS分析工具,默认显示数据视图。

2、切换到变量视图,然后添加六个变量,分别为姓名、M、C、E、S和R,其中姓名是字符串类型,其他都是数字类型。

3、返回到数据视图,向六个变量列插入对应的数据。

4、点击分析菜单,然后依次选择分类--->系统聚类。

5、打开系统聚类分析窗口,将变量M和变量C移到变量框中。

6、点击右侧统计按钮,打开系统聚类分析:统计窗口,选择集中计划,接着点击继续。

7、单击图按钮,打开图设置窗口,勾选谱系图,然后点击继续。

8、接着点击方法按钮,打开系统聚类分析:方法窗口,聚类方法选择瓦尔德法,然后单击继续。

9、最后点击系统聚类分析窗口中的确定按钮,然后生成系统聚类分析结果和图形展示。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式