十进制整数100转换为二进制数是().
十进制整数100转换为二进制数是(1100100)。
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数。
再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
十进制整数转换为二进制整数的例子,假设十进制整数A化得的二进制数为edcba 的形式,那么用上面的方法按权展开, 得
A=a(2^0)+b(2^1)+c(2^2)+d(2^3)+e(2^4) (后面的和不正是化十进制的过程吗)
假设该数未转化为二进制,除以基数2得
A/2=a(2^0)/2+b(2^1)/2+c(2^2)/2+d(2^3)/2+e(2^4)/2
扩展资料:
二进制数只有“0”和“1”两个基本符号,易于用两种对立的物理状态表示。
例如,可用"1"表示电灯开关的“闭合”状态,用“0”表示“断开”状态;晶体管的导通表示“1”, 截止表示“0”;电容器的充电和放电、电脉冲的有和无、脉冲极性的正与负、电位的高与低等一切有两种对立稳定状态的器件都可以表示二进制的“0”和“1”。
而十进制数有10个基本符号(0、1、2、3、4、5、6、7、8、9),要用10种状态才能表示,要用电子器件实现起来是很困难的。
二进制数的算术运算特别简单,加法和乘法仅各有3条运算规则( 0+0=0,0+1=1,1+1=10和0×0=0,0×1=0,1×1=1 ),运算时不易出错。
其实计算机处理算术运算时都是加法和移位,并没有乘除法,如11B左移一位就成了110B,11B是十进制的3,而110B是6,看看是不是等于乘二,左移乘,右移就除,哈哈,好玩吧]此外,二进制数的“1”和“0”正好可与逻辑值“真”和“假”相对应,这样就为计算机进行逻辑运算提供了方便。
算术运算和逻辑运算是计算机的基本运算,采用二进制可以简单方便地进行这两类运算。
参考资料: