高数无穷级数求详解!将f(x)=arccotx 展开成x的幂级数?
1个回答
展开全部
f'(x)=-1/(1+x^2)=-1/【1-(-x^2)】
=-∑(n=0,∞)(-x^2)^n
=-∑(n=0,∞)(-1)^nx^(2n)
=∑(n=0,∞)(-1)^(n+1)x^(2n)
所以f(x)=∫(0,x)f'(x)dx=∫(0,x)【∑(n=0,∞)(-1)^(n+1)x^(2n)】dx
=∑(n=0,∞)(-1)^(n+1)【∫(0,x)x^(2n)dx】
=∑(n=0,∞)(-1)^(n+1)*1/(2n+1)*x^(2n+1) (-1,3,希望你喜欢 ,1,
=-∑(n=0,∞)(-x^2)^n
=-∑(n=0,∞)(-1)^nx^(2n)
=∑(n=0,∞)(-1)^(n+1)x^(2n)
所以f(x)=∫(0,x)f'(x)dx=∫(0,x)【∑(n=0,∞)(-1)^(n+1)x^(2n)】dx
=∑(n=0,∞)(-1)^(n+1)【∫(0,x)x^(2n)dx】
=∑(n=0,∞)(-1)^(n+1)*1/(2n+1)*x^(2n+1) (-1,3,希望你喜欢 ,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询