已知函数f(x)=x^2+kx+1/x^2+1 若当x大于0时,f(x)的最小值为-1,求实数k的值
1个回答
展开全部
分母是x^2+1、分子是x^2+kx+1吧?
如果是的话:
f(x)=(x^2+kx+1)/(x^2+1)
f'(x)=[(2x+k)(x^2+1)-(x^2+kx+1)(2x)]/[(x^2+1)^2]
f'(x)=k(1-x^2)/[(x^2+1)^2]
1、若k>0
令:f'(x)>0,即:k(1-x^2)/[(x^2+1)^2]>0
有:1-x^2>0,因为x>0,解得:x∈(0,1)
此时f(x)为单调增函数
令:f'(x)<0,即:k(1-x^2)/[(x^2+1)^2]<0
有:1-x^2<0,因为x>0,解得:x∈(1,∞)
此时f(x)为单调减函数.
所以,当x=1时,f(x)有最大值f(1).
即:k>0时,f(x)没有最小值.
2、若k<0
令:f'(x)>0,即:k(1-x^2)/[(x^2+1)^2]>0
有:1-x^2<0,因为x>0,解得:x∈(1,∞)
此时f(x)为单调增函数
令:f'(x)<0,即:k(1-x^2)/[(x^2+1)^2]<0
有:1-x^2>0,因为x>0,解得:x∈(0,1)
此时f(x)为单调减函数.
所以,当x=1时,f(x)有最小值f(1).
f(1)=(1^2+k×1+1)/(1^2+1)
f(1)=(2+k)/2
而已知:f(1)=-1
所以:(2+k)/2=-1
2+k=-2
k=-4
即:k>0时,f(x)没有最小值.
如果是的话:
f(x)=(x^2+kx+1)/(x^2+1)
f'(x)=[(2x+k)(x^2+1)-(x^2+kx+1)(2x)]/[(x^2+1)^2]
f'(x)=k(1-x^2)/[(x^2+1)^2]
1、若k>0
令:f'(x)>0,即:k(1-x^2)/[(x^2+1)^2]>0
有:1-x^2>0,因为x>0,解得:x∈(0,1)
此时f(x)为单调增函数
令:f'(x)<0,即:k(1-x^2)/[(x^2+1)^2]<0
有:1-x^2<0,因为x>0,解得:x∈(1,∞)
此时f(x)为单调减函数.
所以,当x=1时,f(x)有最大值f(1).
即:k>0时,f(x)没有最小值.
2、若k<0
令:f'(x)>0,即:k(1-x^2)/[(x^2+1)^2]>0
有:1-x^2<0,因为x>0,解得:x∈(1,∞)
此时f(x)为单调增函数
令:f'(x)<0,即:k(1-x^2)/[(x^2+1)^2]<0
有:1-x^2>0,因为x>0,解得:x∈(0,1)
此时f(x)为单调减函数.
所以,当x=1时,f(x)有最小值f(1).
f(1)=(1^2+k×1+1)/(1^2+1)
f(1)=(2+k)/2
而已知:f(1)=-1
所以:(2+k)/2=-1
2+k=-2
k=-4
即:k>0时,f(x)没有最小值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询