圆的标准方程和一般方程
展开全部
圆的一般方程为 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0),圆的标准方程是x2+y2=0。
圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。
圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)
圆的特性:
1、圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。
2、圆是轴对称、中心对称图形。
3、对称轴是直径所在的直线。
4、是一条光滑a封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上。
5、如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
6、弦切角的度数等于它所夫的弧的度数的一半。
7、圆内角的度数等于这个角所对的弧的度数之和的一半。
8、圆外角的度数等于这个角所截两段弧的度数之差的一半。
9、周长相等,圆面积比正方形、长方形、二角形的面积大。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询