循环小数怎么化成分数
循环小数化成分数的方法如下:
1、无限小数化为分数
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……
前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
2、有限小数化为分数
根据小数的意义先将小数化为分母是10,100,1000,....的的分数,原来是几位小数就在1后面写几个0作为分母,把原来的小数点去掉后的数字做分子,能约分的化简成最简分数。
循环小数的含义:
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。
广告 您可能关注的内容 |