罗素悖论的通俗版又被称为( ).
1个回答
展开全部
罗素悖论的通俗版又被称为理发师悖论。
罗素悖论:设性质P(x)表示“x不属于x”,现假设由性质P确定了一个类A--也就是说“A={x|x∉A}”。
那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次,若A不属于A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A属于A。
罗素悖论还有一些更为通俗的描述,如理发师悖论、书目悖论。
理发师悖论:
在某个城市中有一位理发师,他的广告词是这样写的:”本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”
来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?
如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询