函数极限的概念

 我来答
留溶溶A6
2022-12-18 · TA获得超过745个赞
知道大有可为答主
回答量:5671
采纳率:99%
帮助的人:129万
展开全部

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及侍迹函数极限的运算法则和复合函数的极限等等。


方法
①利用函数连续性:

(就是直接将趋向值带入函数自变量中,此时要要求拍谈好分母不能为0)

②袭铅恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。


第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

③通过已知极限

特别是两个重要极限需要牢记。

④采用洛必达法则求极限。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式