不定积分的计算

 我来答
茜茜泠月
2022-12-20 · 超过96用户采纳过TA的回答
知道小有建树答主
回答量:246
采纳率:100%
帮助的人:3.5万
展开全部

不定积分的计算方法如下:

1、凑微分法:把被积分式凑成某个函数的微分的积分方法。

2、换元法:包括整体换元,部分换元等等。

3、分部积分法:利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。

4、有理函数积分法:有理函数是指由两个多项式函数的商所表示的函数,由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和。

扩展资料:

积分公式法  直接利用积分公式求出不定积分。

换元积分法  换元积分法可分为第一类换元法与第二类换元法。

一、第一类换元法(即凑微分法)  通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

二、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:根式代换法和三角代换法。

在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。链式法则是一种最有效的微分方法,自然也是最有效的积分方法。

分部积分法  分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分,实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为计算真分式的积分。

可以证明,任何真分式总能分解为部分分式之和。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式