线性代数 方阵设n阶方阵A满足:A*A-A-2E=0,则必有?1 A=2E2 A=-E3 A-E可逆4 A不可逆 我来答 1个回答 #合辑# 机票是越早买越便宜吗? 大沈他次苹0B 2022-10-18 · TA获得超过7286个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:172万 我也去答题访问个人页 关注 展开全部 答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-05-09 设A是n阶方阵,且A^2=A,求证A+E可逆 2 2020-07-22 线性代数 已知N阶方阵A满足A^2-3A-2E=0,E为N阶单位阵,试证A可逆,并求A^(-1) 2 2022-07-21 线性代数问题(A-E)^-1=? 设n阶方阵A满足A^+4A-8E=0,且A-E可逆,则(A-E)^-1=? 2022-11-25 线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E 2021-12-10 已知n阶方阵A满足A^2-3A-2E=0 证明A,A+2E都是可逆矩阵 2022-09-04 设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆? 2022-10-13 已知n阶方阵A满足2A(A-E)=A^3,证明E-A可逆,并求(E-A)^(-1)? 2022-06-02 A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1 为你推荐: