怎样利用定积分求曲线y= x的体积

 我来答
百度网友0d648b8
高粉答主

2022-12-26 · 每个回答都超有意思的
知道大有可为答主
回答量:3984
采纳率:100%
帮助的人:114万
展开全部
空间曲线为z+y²=1,
绕z轴旋转,则将y换成±√x²+y²
得出旋转曲面:z+x²+y²=1。

用定积分
联立y=x^2与x=y^2得交点(0,0)(1,1)
面积
∫[0,1] (√x-x^2)dx
=[2/3x^(3/2)-x^3/3][0,1]
=1/3
体积
∫[0,1] π[(√x)^2-(x^2)^2]dx
=π(x^2/2-x^5/5)[0,1]
=3π/10。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式