已知fx是连续函数,证明∫上限b下限a f(x)dx=(b-a)∫上限1下限0[a+(b-a)x dx

 我来答
世纪网络17
2022-08-25 · TA获得超过5970个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:145万
展开全部
令 (x-a)/(b-a)=t x=(b-a)t+a dx=(b-a)dt
∫[a,b]f(x)dx
=∫[0,1]f[(b-a)t+a](b-a)dt
=(b-a) ∫[0,1]f[(b-a)t+a]dt
=(b-a) ∫[0,1]f[a+(b-a)x]dx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式