用换元法和分部积分法解积分∫x (lnx)^2 dx?

 我来答
舒适还明净的海鸥i
2022-11-23 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:69.5万
展开全部
∫ x(lnx)² dx=∫ (lnx)² d(x²/2)
令u=(lnx)² ,v=x²/2,则
du = 2lnx * (1/x) dx
由分部积分公式∫u dv = uv - ∫v du
∫ x(lnx)² dx=∫ (lnx)² d(x²/2)
=(x²/2)(lnx)² - ∫(x²/2) * 2lnx * (1/x) dx
=(x²/2)(lnx)² - ∫x lnx dx
=(x²/2)(lnx)² - ∫ lnx d(x²/2)
=(x²/2)(lnx)² - [(x²/2) * lnx - ∫(x²/2) * (1/x) dx]
=(x²/2)(lnx)² - [(x²/2) * lnx - ∫(x/2) dx]
=(x²/2)(lnx)² - [(x²/2) * lnx - x²/4 ) + C
=(x²/4)*[2(lnx)²-2lnx+1]+C,2,令a=lnx
x=e^a
dx=e^ada
原式=∫e^a*a*e^ada
=∫ae^2ada
=1/2∫ae^2ad2a
=1/2∫ade^2a
=1/2ae^2a-1/2∫e^2ada
=1/2ae^2a-1/4e^2a+C
=1/2*lnx*x²-x²/4+C正确答案是(x^2/4)*[2*(lnx...,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式