请问第四题怎么做?
2个回答
展开全部
由题意:2cosx+1≥0,则cosx≥-1/2
∴2kπ-2π/3≤x≤2kπ + 2π/3,(k∈Z)
∴函数的定义域是[2kπ-2π/3,2kπ+2π/3],(k∈Z)
∴2kπ-2π/3≤x≤2kπ + 2π/3,(k∈Z)
∴函数的定义域是[2kπ-2π/3,2kπ+2π/3],(k∈Z)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2kπ≤x≤2π/3+2kπ或2kπ+4π/3≤x≤2(k+1)π,(k=0,1,2,3······)
首先,根号内要大于等于0,得到2cosx+1≥0,所以cosx≥-1/2,即在(0,2π)区间内,0≤x≤2π/3或4π/3≤x≤2π,又因为cosx是周期为2π的三角函数,所以2kπ≤x≤2π/3+2kπ或2kπ+4π/3≤x≤2(k+1)π,(k=0,1,2,3······)
首先,根号内要大于等于0,得到2cosx+1≥0,所以cosx≥-1/2,即在(0,2π)区间内,0≤x≤2π/3或4π/3≤x≤2π,又因为cosx是周期为2π的三角函数,所以2kπ≤x≤2π/3+2kπ或2kπ+4π/3≤x≤2(k+1)π,(k=0,1,2,3······)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询