什么是导数,有何几何意义?
1个回答
2022-12-31
展开全部
导数的概念与几何意义
1. 导数的概念
设函数 在 及其近旁有定义,用 表示 的改变量,于是对应的函数值改变量为 ,如果极限 存在极限,则称函数 在点 处可导,此极限值叫函数 在点 处的导数,记作 或
称为函数 在 到 之间的平均变化率,函数 在点 处的导数即平均变化率当 时的极限值。
2. 导数的几何意义
函数 在一点 的导数等于函数图形上对应点 的切线斜率,即 ,其中 是过 的切线的倾斜角,过点 的切线方程为
3. 导数的物理意义
函数 在 的导数是函数在该点处平均变化率的极限,即瞬时变化率,若函数 表示运动路程,则 表示在 时刻的瞬时速度。
4. 导函数的概念
如果函数 在开区间 内每一点都可导,就说 在 内可导,这时,对于开区间 内每个确定的值 都对应一个确定的导数 ,这就在 内构成一个新的函数,此函数就称为 在 内的导函数,记作 或 ,即
而当 取定某一数值 时的导数是上述导函数的一个函数值。
导数与导函数概念不同,导数是在一点处的导数 ,导函数是某一区间 内的导数,对
导函数是以 内任一点 为自变量,以 处的导数值为函数值的函数关系,导函数反映的是一般规律,而 等于某一数值时的导数是此规律中的特殊性。
1. 导数的概念
设函数 在 及其近旁有定义,用 表示 的改变量,于是对应的函数值改变量为 ,如果极限 存在极限,则称函数 在点 处可导,此极限值叫函数 在点 处的导数,记作 或
称为函数 在 到 之间的平均变化率,函数 在点 处的导数即平均变化率当 时的极限值。
2. 导数的几何意义
函数 在一点 的导数等于函数图形上对应点 的切线斜率,即 ,其中 是过 的切线的倾斜角,过点 的切线方程为
3. 导数的物理意义
函数 在 的导数是函数在该点处平均变化率的极限,即瞬时变化率,若函数 表示运动路程,则 表示在 时刻的瞬时速度。
4. 导函数的概念
如果函数 在开区间 内每一点都可导,就说 在 内可导,这时,对于开区间 内每个确定的值 都对应一个确定的导数 ,这就在 内构成一个新的函数,此函数就称为 在 内的导函数,记作 或 ,即
而当 取定某一数值 时的导数是上述导函数的一个函数值。
导数与导函数概念不同,导数是在一点处的导数 ,导函数是某一区间 内的导数,对
导函数是以 内任一点 为自变量,以 处的导数值为函数值的函数关系,导函数反映的是一般规律,而 等于某一数值时的导数是此规律中的特殊性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询