高一数学已知函数f(x)=根号3(sin²x-cos²x)+2sinxcosx+1 (1)求函数f(?
1个回答
展开全部
f(x)=√3(sin²x-cos²x)+2sinxcosx+1=-√3cos2x+sin2x+1=2sin(2x+π/3)+1
当2x+π/3∈[π/2+2kπ,3π/2+2kπ]时f(x)单调递减
解得
x∈[π/12+kπ,7π/12+kπ]
∴函数f(x)单调递减区间为x∈[π/12+kπ,7π/12+kπ](k∈Z)
若x∈[0,π/2]则2x+π/3∈[π/3,4π/3]
sin(2x+π/3)∈[-√3/2,1]
∴f(x)的值域为[1-√3,3],1,
蓝天的天 举报
还有一小题 谢谢 不好意思,上面两道题有错误现在更正一下! f(x)=√3(sin²x-cos²x)+2sinxcosx+1=-√3cos2x+sin2x+1=2sin(2x-π/3)+1 当2x-π/3∈[π/2+2kπ,3π/2+2kπ]时f(x)单调递减 解得 x∈[5π/12+kπ,11π/12+kπ] ∴函数f(x)单调递减区间为x∈[5π/12+kπ,11π/12+kπ](k∈Z) 若x∈[0,π/2]则2x-π/3∈[-π/3,2π/3] sin(2x+π/3)∈[-√3/2,1] ∴f(x)的值域为[1-√3,3] f(0.5x+π/6)=2sinx+1 g(x)=2asinx+cos2x+a=2asinx+1-2sin²x+a=2asinx-2sin²x-0.5a²+0.5a²+a+1=-2(sinx-0.5a)²+0.5a²+a+1 当-2≤a≤2时h(a)=0.5a²+a+1 当a≤-2时h(a)=-a-1 当a≥2时h(a)=3a-1 累死我了,请求加二十分!,f(x)=√3(sin²x-cos²x)+2sinxcosx+1
=-√3cos2x+sin2x+1
=2(1/2sin2x-√3/2cos2x)+1
=2sin(2x-π/3)+1
2x+π/3在[2kπ+π/2,2kπ+3π/2]单调递减
x在[kπ+π/6,kπ+7π/6]单调递减
2)x∈[2?,π/2],
3)g...,2,高一数学
已知函数f(x)=根号3(sin²x-cos²x)+2sinxcosx+1
(1)求函数f(x)单调递减区间
(2)若x∈[2,π/2],求f(x)的值域
(3)令函数g(x)=a*f(1/2 x+π/6)+cos2x(a∈R),求函数g(x)的最大值的表达式h(a)
当2x+π/3∈[π/2+2kπ,3π/2+2kπ]时f(x)单调递减
解得
x∈[π/12+kπ,7π/12+kπ]
∴函数f(x)单调递减区间为x∈[π/12+kπ,7π/12+kπ](k∈Z)
若x∈[0,π/2]则2x+π/3∈[π/3,4π/3]
sin(2x+π/3)∈[-√3/2,1]
∴f(x)的值域为[1-√3,3],1,
蓝天的天 举报
还有一小题 谢谢 不好意思,上面两道题有错误现在更正一下! f(x)=√3(sin²x-cos²x)+2sinxcosx+1=-√3cos2x+sin2x+1=2sin(2x-π/3)+1 当2x-π/3∈[π/2+2kπ,3π/2+2kπ]时f(x)单调递减 解得 x∈[5π/12+kπ,11π/12+kπ] ∴函数f(x)单调递减区间为x∈[5π/12+kπ,11π/12+kπ](k∈Z) 若x∈[0,π/2]则2x-π/3∈[-π/3,2π/3] sin(2x+π/3)∈[-√3/2,1] ∴f(x)的值域为[1-√3,3] f(0.5x+π/6)=2sinx+1 g(x)=2asinx+cos2x+a=2asinx+1-2sin²x+a=2asinx-2sin²x-0.5a²+0.5a²+a+1=-2(sinx-0.5a)²+0.5a²+a+1 当-2≤a≤2时h(a)=0.5a²+a+1 当a≤-2时h(a)=-a-1 当a≥2时h(a)=3a-1 累死我了,请求加二十分!,f(x)=√3(sin²x-cos²x)+2sinxcosx+1
=-√3cos2x+sin2x+1
=2(1/2sin2x-√3/2cos2x)+1
=2sin(2x-π/3)+1
2x+π/3在[2kπ+π/2,2kπ+3π/2]单调递减
x在[kπ+π/6,kπ+7π/6]单调递减
2)x∈[2?,π/2],
3)g...,2,高一数学
已知函数f(x)=根号3(sin²x-cos²x)+2sinxcosx+1
(1)求函数f(x)单调递减区间
(2)若x∈[2,π/2],求f(x)的值域
(3)令函数g(x)=a*f(1/2 x+π/6)+cos2x(a∈R),求函数g(x)的最大值的表达式h(a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询