求定积分I=∫(0-1) (x^b-x^a)/Inx(b>a>o) 在线等 我来答 1个回答 #合辑# 机票是越早买越便宜吗? 华源网络 2022-09-02 · TA获得超过5587个赞 知道小有建树答主 回答量:2486 采纳率:100% 帮助的人:146万 我也去答题访问个人页 关注 展开全部 易知:(x^b-x^a)/lnx =∫[a->b] x^ydy,而函数x^y显然在x∈[0,1],y∈[a,b]上连续I=∫(0-1) (x^b-x^a)/Inx=∫[0->1]dx∫[a->b] x^y dy=∫[a->b] dy∫[0->1]x^ydx=∫[a->b] 1/(1+y) dy=ln((1+b)/(1+a))... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: