三角函数. 证明 (cosx+sinx)(cos2x+sin2x)=cosx + sin3x
1个回答
展开全部
证明:(cosx+sinx)(cos2x+sin2x)
=cosxcos2x+cosxsin2x+sinxcos2x+sinxsin2x
=(cosxcos2x+sinxsin2x)+(cosxsin2x+sinxcos2x)
=(cosxcos2x+sinxsin2x)+sin3x
=[cosx(1-2sinx^2)+sinx 2sinxcosx]+sin3x
=[cosx(1-2sinx^2+2sinx^2)]+sin3x
=cosx+sin3x
=cosxcos2x+cosxsin2x+sinxcos2x+sinxsin2x
=(cosxcos2x+sinxsin2x)+(cosxsin2x+sinxcos2x)
=(cosxcos2x+sinxsin2x)+sin3x
=[cosx(1-2sinx^2)+sinx 2sinxcosx]+sin3x
=[cosx(1-2sinx^2+2sinx^2)]+sin3x
=cosx+sin3x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询