求助!微分方程的通解!
1个回答
展开全部
微分方程的通解(xy^2+x)dx+(y-x^2y)dy=0。书上答案是(1+y^2)/(1-x^2)=C (xy^2+x)dx+(y-x^2y)dy=0
x(y^2+1)dx=y(x^2-1)dy
y/(y^2+1)dy=x/(x^2-1)dx
2y/(y^2+1)dy=2x/(x^2-1)dx
两边积分,得
ln(y^2+1)=ln(x^2-1)+lnc
y²+1=c【x²-1】
即
(1+y^2)/(1-x^2)=C
x(y^2+1)dx=y(x^2-1)dy
y/(y^2+1)dy=x/(x^2-1)dx
2y/(y^2+1)dy=2x/(x^2-1)dx
两边积分,得
ln(y^2+1)=ln(x^2-1)+lnc
y²+1=c【x²-1】
即
(1+y^2)/(1-x^2)=C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询