请问矩阵满秩的条?
1个回答
展开全部
矩阵可逆条件:AB=BA=E。
矩阵可逆的充分必要条件:AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。
A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。
相关定理
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
(2)n阶方阵A可逆的充分必要条件是r(A)=m。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询