已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式
展开全部
4Sn=(an+1)^2
4Sn-1 =(an-1 +1)^2n-1为下标
则4an=4Sn-4Sn-1=(an+1)^2-(an-1 +1)^2
化简得(an -1)^2=(an-1 +1)^2
则an -1=正负(an-1 +1)
又{an}各项均为正数
则an -1=an-1 +1
即an-an-1=2
又令n=1,得a1=1
即{an}为首项为,公差为2的等差数列
即an=2n-1
4Sn-1 =(an-1 +1)^2n-1为下标
则4an=4Sn-4Sn-1=(an+1)^2-(an-1 +1)^2
化简得(an -1)^2=(an-1 +1)^2
则an -1=正负(an-1 +1)
又{an}各项均为正数
则an -1=an-1 +1
即an-an-1=2
又令n=1,得a1=1
即{an}为首项为,公差为2的等差数列
即an=2n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询