已知复数z满足:lzl=1+3i-z,求(1+i)^2(3+4i)^2/2z的值 如题

 我来答
科创17
2022-08-16 · TA获得超过5914个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:176万
展开全部
设z=x+iy,x,y为实数.由题意 lzl=1+3i-z,等式左边模长为实数,故等式右边虚数部分必抵消,否则等式不成立,可判断,y=-3,即z=x-3i,代回原等式,x^2+9=(x+1)^2,解得x=4
故z=4-3i
(1+i)^2(3+4i)^2/2z
=2i*(3+4i)^2/[2*(4-3i)]
=i*(3+4i)^2/(4-3i)
=i*(3+4i)(3+4i)(4+3i)/25
=(3+4i)(3+4i)(4i-3)/25
=(3+4i)*(-25)/25=-3-4i
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式