求一道高中数学压轴题

 我来答
社图君
2022-12-20 · 超过22用户采纳过TA的回答
知道答主
回答量:240
采纳率:100%
帮助的人:5.6万
展开全部
设函数 $f(x)$ 在区间 $[a, b]$ 上连续,且 $F(x)$ 是 $f(x)$ 的不定积分,即 $F(x)=\int_{a}^{x}f(t)dt$。已知 $F(x)$ 在区间 $[a, b]$ 上的最大值为 $M$,最小值为 $m$,且 $m<M$。求证:存在 $c,d\in[a,b]$,使得 $f(c)=f(d)=\dfrac{M-m}{b-a}$。
证明:
首先,由于 $F(x)$ 在区间 $[a,b]$ 上的最大值为 $M$,最小值为 $m$,所以有 $F(x)-m\le M-m$,即 $F(x)-m\le \dfrac{M-m}{b-a}(x-a)$。
令 $g(x)=F(x)-m-\dfrac{M-m}{b-a}(x-a)$,则有 $g(x)\le 0$。
由于 $f(x)$ 在区间 $[a,b]$ 上连续,所以 $F(x)$ 在区间 $[a,b]$ 上也连续,即 $g(x)$ 在区间 $[a,b]$ 上连续。
由于 $g(a)=F(a)-m-\dfrac{M-m}{b-a}(a-a)=F(a)-m\le 0$,$g(b)=F(b)-m-\dfrac{M-m}{b-a}(b-a)=F(b)-m\le 0$,所以 $g(x)$ 在区间 $[a,b]$ 上的最小值为 $0$。
若存在 $c,d\in[a,b]$,使得 $g(c)=g(d)=0$,则 $F(c)-m=\dfrac{M-m}{b-a}(c-a)$ 和 $F(d)-m
继续证明:
由于 $g(x)=F(x)-m-\dfrac{M-m}{b-a}(x-a)$,所以 $F(x)=g(x)+m+\dfrac{M-m}{b-a}(x-a)$。
将上式代入 $F(c)=F(d)$,得到:
$$g(c)+m+\dfrac{M-m}{b-a}(c-a)=g(d)+m+\dfrac{M-m}{b-a}(d-a)$$
化简得到:
$$g(c)-g(d)=\dfrac{M-m}{b-a}(d-c)$$
由于 $g(c)=g(d)=0$,所以 $\dfrac{M-m}{b-a}(d-c)=0$,即 $d=c$。
因此,存在 $c\in[a,b]$,使得 $g(c)=0$。
所以,有 $F(c)-m=\dfrac{M-m}{b-a}(c-a)$,即 $f(c)=\dfrac{M-m}{b-a}$。
证毕。
minlovehou
2022-10-06 · TA获得超过187个赞
知道答主
回答量:2
采纳率:0%
帮助的人:1644
展开全部
题目:d(∫0~x du∫0~u2-1f(t)dt)/dx
令F(u)=∫0~u2-1 f(t)dt
所以原式=d(∫0~x F(u)du)/dx
=F(x)
将x代入F(u)得
F(x)=∫0~x2-1 f(t)dt
这是根据楼主(叫我齐天大肾)思路写的,他太牛了!记得给他点赞(。ò ∀ ó。)!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式