一个极限存在为0,另一个极限不存在,两个相乘,结果一定吗?要例子

 我来答
风林网络手游平台
2022-11-15 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

结果不一定。

例如:f极限存在,且为0,g(x)=sinx,sinx是有界,故f*g是无穷小乘以有界,极限存在且为0。设h(x)极限为无穷,则f*h是0*无穷的未定式,极限不一定存在。

设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε(不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn}的极限,或称数列{xn} 收敛于a。记作

扩展资料:

极限的性质:

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列:“1,-1,1,-1,……,(-1)n+1”

3、保号性:若

(或<0),则对任何m∈(0,a)(a<0时则是m∈(a,0)),存在N>0,使n>N时有

(相应的xn<m)。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式