一个极限存在为0,另一个极限不存在,两个相乘,结果一定吗?要例子
1个回答
展开全部
结果不一定。
例如:f极限存在,且为0,g(x)=sinx,sinx是有界,故f*g是无穷小乘以有界,极限存在且为0。设h(x)极限为无穷,则f*h是0*无穷的未定式,极限不一定存在。
设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε(不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn}的极限,或称数列{xn} 收敛于a。记作
扩展资料:
极限的性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列:“1,-1,1,-1,……,(-1)n+1”
3、保号性:若
(或<0),则对任何m∈(0,a)(a<0时则是m∈(a,0)),存在N>0,使n>N时有
(相应的xn<m)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |