在n阶行列式的展开式中任取一项,此项含有主对角元的概率是多少?
解:在行列式
中划去元素aij所在的第i行第j列,剩下的(n-1)2个元素按原来的排法构成一个n-1阶的行列式Mij,称Mij为元素aij的余子式,Aij=(-1)i+j Mij称为元素的代数余子式。
设
Aij表示元素aij的代数余子式,则:
扩展资料
性质:
1、行列互换,行列式不变。
2、把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。
3、如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。
4、如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)
5、如果行列式中两行(列)成比例,那么行列式为零。
6、把一行(列)的倍数加到另一行(列),行列式不变。
7、对换行列式中两行(列)的位置,行列式反号。
8、[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。
9、非空有上(下)界的点集必有上(下)确界。由于已经证明了f(x)在[a,b]上有界,因此由确界原理可知,f(x)的值域f([a,b])必有上确界和下确界。
10、设f([a,b])的上确界为M,则必存在ξ∈[a,b]使f(ξ)=M,若不是这样,根据上界的定义,对任意x∈[a,b],都有f(x)<M。
广告 您可能关注的内容 |