导数与极限有区别吗?
有区别,列举如下:
1、定义不同
导数:当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
极限:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程。
此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
2、本质不同
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
3、起源不同
导数:大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是导数f'(A)。
极限:古希腊人的穷竭法蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
4、几何意义不同
如上图所示,导数在图中的直观表现是点P处的直线斜率。
极限的直观表示就是函数图像无限趋近于某一常数但始终达不到,如y=a^x的图像。
参考资料来源:百度百科-导数
参考资料来源:百度百科-极限