为什么函数极限要在去心邻域内有定义

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

因为函数在某点有极限,并不要求函数在该点有定义。在运用以上两条去求函数的极限时尤需注意以下关键之点:

一是先要用单调有界定理证明收敛,然后再求极限值。

二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

扩展资料

1、是连续函数;不连续的函数,间断点的极限不一定存在。

2、其邻域不可以超出其开区间;在闭区间,左区间端点只有右极限,左极限不存在;同理,右区间的端点没有右极限。

3、其邻域的半径要有限,如果其邻域半径为∞,极限也不一定存在。

参考资料来源:百度百科-函数极限

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式