线性相关和线性无关的区别是什么?

 我来答
帐号已注销
2023-01-05 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.5万
展开全部

原因:线性相关就是各行或列能互相线性表示,能进行初等变换,把某一行或列变换到另一行或列,最后有一行会全为0,计算时行列式就等于0。所以行列式等于0就是线性相关。

相反的,线性无关它的行列式不等于0,说明是满秩,没有一行或一列全为0。

没有具体的定理。

在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

行列式A中两行(或列)互换,其结果等于-A。 

把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

扩展资料:

例如,四个数a、b、c、d所排成二阶行式记为  ,它的展开式为ad-bc。

九个数a1,a2,a3;b1,b2,b3;c1,c2,c3排成的三阶行列式记为  ,它的展开式为a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-a3b2c1. 行列式起源于线性方程组的求解,在数学各分支有广泛的应用。在代数上,行列式可用来简化某些表达式,例如表示含较少未知数的线性方程组的解等。

如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)

如果行列式中两行(列)成比例,那么行列式为零。

把一行(列)的倍数加到另一行(列),行列式不变。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式