1个回答
展开全部
解:设5个点的坐标分别为(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5).由于均为整点,则a1-5,b1-5都为整数。
假设A,B分别代表奇数携模和偶数,横坐标或A或B,有2种可能;纵坐标也是或A或B,有2种可能。任意整点的奇偶形态最多有2×2=4种:
(A,A),(A,B),(B,A),(B,B)。根据抽屉原理,该5个点中必有2个点奇偶形态重合。
该2个奇偶形态重合辩脊缓点连线的的中点横坐标是该两点横坐标之和的一半,纵坐标是该两点纵坐标之和的一半。由于A+A=B,为偶数;B+B=B,仍为野镇偶数,所以无论哪种重合方式,该两点连线的中点的横纵坐标都是某个偶数的一半,故该两点的连线的中点为整点。
综上,原题得证。
假设A,B分别代表奇数携模和偶数,横坐标或A或B,有2种可能;纵坐标也是或A或B,有2种可能。任意整点的奇偶形态最多有2×2=4种:
(A,A),(A,B),(B,A),(B,B)。根据抽屉原理,该5个点中必有2个点奇偶形态重合。
该2个奇偶形态重合辩脊缓点连线的的中点横坐标是该两点横坐标之和的一半,纵坐标是该两点纵坐标之和的一半。由于A+A=B,为偶数;B+B=B,仍为野镇偶数,所以无论哪种重合方式,该两点连线的中点的横纵坐标都是某个偶数的一半,故该两点的连线的中点为整点。
综上,原题得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询