求函数y=-2xcos(1-x²)的导数
1个回答
展开全部
使用乘积法则求导数,有:
y' = (-2x)' cos(1-x^2) + (-2x) cos(1-x^2)'
对于第一项,(-2x)' = -2,cos(1-x^2)是常数,所以有:
(-2x)' cos(1-x^2) = -2 cos(1-x^2) x
对于第二项,cos(1-x^2)' = -sin(1-x^2) (1-x^2)' = 2x sin(1-x^2),所以有:
(-2x) cos(1-x^2)' = (-2x) * 2x sin(1-x^2) = -4x^2 sin(1-x^2)
综合两项,得到函数y=-2xcos(1-x²)的导数为:
y' = -2 cos(1-x^2) x - 4x^2 sin(1-x^2)
y' = (-2x)' cos(1-x^2) + (-2x) cos(1-x^2)'
对于第一项,(-2x)' = -2,cos(1-x^2)是常数,所以有:
(-2x)' cos(1-x^2) = -2 cos(1-x^2) x
对于第二项,cos(1-x^2)' = -sin(1-x^2) (1-x^2)' = 2x sin(1-x^2),所以有:
(-2x) cos(1-x^2)' = (-2x) * 2x sin(1-x^2) = -4x^2 sin(1-x^2)
综合两项,得到函数y=-2xcos(1-x²)的导数为:
y' = -2 cos(1-x^2) x - 4x^2 sin(1-x^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询