为什么圆柱体积等于圆锥体积的3分之1?
展开全部
很多朋友或同学们并不懂积分。所以,在下用合理的逻辑,做简单的解释,具备初高中数学都可理解。如下:
首先给个圆柱,高H,底半径R(H与R非无穷大)。
然后,以它的底和高为基础在内部做个圆柱。
怎么比较二者体积呢?关键时刻来了
这里我们先给定几个定义,
1, 假定上帝存在;
2, 用上帝之刀平行于圆柱底均匀切割N次,使N无穷大,得到(N+1)个圆柱和圆锥的切面, 切面的厚度为H/(N+1);
3, 无穷切, 使N无穷大到某程度,得到 Δr= R/N ,使得Δr为圆锥的元点半径(不能更小,类 似电子电荷(元电荷)电量)。这是逻辑上的关键,请深刻理解。
理解了以上定义,我们就可以知道相关计算数据了。对于圆锥的所有切面而言,
各切面半径从顶到底依次为0,Δr,2Δr,…mΔr,…NΔr=R( 因为Δr已定义不可再分),
圆锥各切面面积从顶到底依次为0,πΔr^2,π(2Δr)^2……π(NΔr)^2,
各单切面体积依次是 切面面积*(H/(N+1))
故圆锥体积等于所有切面的体积加和
V锥=(πΔr^2)*(0+1+2^2+3^2+...+N^2) * (H/(N+1))
我们再来看看圆柱的体积。它是(N+1)个圆柱切面体积的加和,很简单
V柱=(N+1) * (πR^2)*(H/(N+1))=(N+1) *(π(NΔr)^2)*(H/(N+1))
故 V锥/ V柱=(0+1+2^2+3^2+...+N^2) / ((N^2)*(N+1))
根据数列知识,
V锥/ V柱=N*(N+1)*(2N+1)/6 / ((N^2)*(N+1))=1/3+1/(6 N)
故,N为无穷大时,V锥/ V柱=1/3
首先给个圆柱,高H,底半径R(H与R非无穷大)。
然后,以它的底和高为基础在内部做个圆柱。
怎么比较二者体积呢?关键时刻来了
这里我们先给定几个定义,
1, 假定上帝存在;
2, 用上帝之刀平行于圆柱底均匀切割N次,使N无穷大,得到(N+1)个圆柱和圆锥的切面, 切面的厚度为H/(N+1);
3, 无穷切, 使N无穷大到某程度,得到 Δr= R/N ,使得Δr为圆锥的元点半径(不能更小,类 似电子电荷(元电荷)电量)。这是逻辑上的关键,请深刻理解。
理解了以上定义,我们就可以知道相关计算数据了。对于圆锥的所有切面而言,
各切面半径从顶到底依次为0,Δr,2Δr,…mΔr,…NΔr=R( 因为Δr已定义不可再分),
圆锥各切面面积从顶到底依次为0,πΔr^2,π(2Δr)^2……π(NΔr)^2,
各单切面体积依次是 切面面积*(H/(N+1))
故圆锥体积等于所有切面的体积加和
V锥=(πΔr^2)*(0+1+2^2+3^2+...+N^2) * (H/(N+1))
我们再来看看圆柱的体积。它是(N+1)个圆柱切面体积的加和,很简单
V柱=(N+1) * (πR^2)*(H/(N+1))=(N+1) *(π(NΔr)^2)*(H/(N+1))
故 V锥/ V柱=(0+1+2^2+3^2+...+N^2) / ((N^2)*(N+1))
根据数列知识,
V锥/ V柱=N*(N+1)*(2N+1)/6 / ((N^2)*(N+1))=1/3+1/(6 N)
故,N为无穷大时,V锥/ V柱=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询