三角函数的诱导公式是怎样的?

 我来答
匿名用户
2023-01-20
展开全部
倒数关系:商的关系:平方关系:tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secαsin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。)sin(-α)=-sinα
cos(-α)=cosαtan(-α)=-tanα
cot(-α)=-cotα sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotαsin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotαsin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z) 两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ 2tan(α/2)
sinα=——————
1+tan2(α/2) 1-tan2(α/2)
cosα=——————
1+tan2(α/2) 2tan(α/2)
tanα=——————
1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3α
tan3α=——————
1-3tan2α 三角函数的和差化积公式三角函数的积化和差公式 α+β α-β
sinα+sinβ=2sin———·cos———
2 2
α+β α-β
sinα-sinβ=2cos———·sin———
2 2
α+β α-β
cosα+cosβ=2cos———·cos———
2 2
α+β α-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
富港检测东莞有限公司
2024-12-25 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);做正弦振动找富港,富港工业检测技术有限公司是一家专业的第三方检测机构,拥有完善的质量管理体系,先进的检测设备,优秀的技术人才;已取得CNAS、CMA、IS... 点击进入详情页
本回答由富港检测东莞有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式