勾股定理定义
勾股定理的解释
[Pythagorean theorem]
《周髀算经》 记载 :西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是 直角 三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。 中国 古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到 公元 前六世纪的毕达哥拉斯时,才发现这 一定 理 详细解释 在直角三角形中,两直角边平方的和等于斜边的平方。在中国古代,称直角三角形中较短的一条直角边为勾,较长的一条直角边为股,斜边为弦,定理因而得名。古代算书 《周髀算经》 所载商高的谈话中曾提出勾股定理的特例“勾三股四弦五”,故又称“商高定理”。在西方,它被称为“毕达哥拉斯定理”。
词语分解
勾股的解释 直角三角形夹直角的两边,短边为“勾”,长边为“股”;在立竿测太阳高度时,日影为勾,标竿为股。广义说法,包括勾股定理的 研究 和应用。参阅《周髀算经》卷上。 定理的解释 通过理论证明能用来作为 原则 或 规律 的命题或公式详细解释.确定的法则或 道理 。《韩非子·解老》:“凡理者, 方圆 、短长、麤靡、坚脆之分也。故理定而后可得道也。故定理有存亡,有死生,有盛衰。夫物 之一 存一亡,乍
2024-04-02 广告