机器学习有哪些算法

 我来答
猪八戒网
2023-04-26 · 百度认证:重庆猪八戒网络有限公司官方账号
猪八戒网
猪八戒网(zbj.com)创建于2006年,现已形成猪八戒网、天蓬网和线下八戒工场的“双平台+一社区”服务模式,是中国领先的人才共享平台。
向TA提问
展开全部

1.线性回归

在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。

2.Logistic回归

Logistic回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。

3.线性判别分析

Logistic回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。

4.分类和回归树

决策树是一类重要的机器学习预测建模算法。

5.朴素贝叶斯

朴素贝叶斯是一种简单而强大的预测建模算法。

6.K最近邻算法

K最近邻(KNN)算法是非常简单而有效的。KNN的模型表示就是整个训练数据集。

7.学习向量量化

KNN算法的一个缺点是,你需要处理整个训练数据集。

8.支持向量机

支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。

9.袋装法和随机森林

随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。

想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(CertifiedDataAnalyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式