这个题最终的计算结果是多少?
2个回答
展开全部
根据已知条件,我们有 tan(x) = 1/2 和 tan(y) = 1/3。现在我们需要计算 tan(5x+6y)。
使用三角函数的合角公式,我们可以计算出 tan(5x) 和 tan(6y) 的值,然后再代入公式计算 tan(5x+6y)。
tan(5x) = (2tan(2x))/(1-tan²(2x)) = (2tan(x))/(1-tan²(x))
= (2*(1/2))/(1-(1/2)²) = 1/(1-(1/4)) = 1/(3/4) = 4/3
tan(6y) = (tan(3y) + tan(3y))/(1 - tan²(3y)) = (1/3 + 1/3)/(1 - (1/3)²) = 2/3/(8/9) = 3/4
现在我们可以代入计算 tan(5x+6y):
tan(5x+6y) = (tan(5x) + tan(6y))/(1 - tan(5x) * tan(6y))
= (4/3 + 3/4)/(1 - (4/3) * (3/4))
= (16/12 + 9/12)/(1 - 12/12)
= (25/12)/(1 - 1)
= 25/12
所以,tan(5x+6y) = 25/12。
使用三角函数的合角公式,我们可以计算出 tan(5x) 和 tan(6y) 的值,然后再代入公式计算 tan(5x+6y)。
tan(5x) = (2tan(2x))/(1-tan²(2x)) = (2tan(x))/(1-tan²(x))
= (2*(1/2))/(1-(1/2)²) = 1/(1-(1/4)) = 1/(3/4) = 4/3
tan(6y) = (tan(3y) + tan(3y))/(1 - tan²(3y)) = (1/3 + 1/3)/(1 - (1/3)²) = 2/3/(8/9) = 3/4
现在我们可以代入计算 tan(5x+6y):
tan(5x+6y) = (tan(5x) + tan(6y))/(1 - tan(5x) * tan(6y))
= (4/3 + 3/4)/(1 - (4/3) * (3/4))
= (16/12 + 9/12)/(1 - 12/12)
= (25/12)/(1 - 1)
= 25/12
所以,tan(5x+6y) = 25/12。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询