对坐标的曲线积分问题
计算∫(L)(x+y)dy+(x-y)dx/x^2+y^2-2x+2y,其中L为圆周(x-1)^2+(y+1)^2=4正向答案:4派...
计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向
答案:4派 展开
答案:4派 展开
1个回答
展开全部
1. 使用参数法。
令(x-1)/2=cost,(y+1)/2=sint,得:
x=1+2cost,y=-1+2sint,dx=-2sintdt,dy=2costdt,代入积分式得:
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=(下限0,上限2π)∫[4(cost+sint)cost-4(1+cost-sint)sint]dt/(4-2)
=(下限0,上限2π)∫2(1-sint)dt=4π
2. 使用格林理论。
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2] ...由于圆周是(x-1)²+(y+1)²=4。在圆的周边线上积分时,上面分母中的(x-1)²+(y+1)²=4。所以:
∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=∫(L) (x+y)dy+(x-y)dx/(4-2)
=(1/2)∫(L) (x+y)dy+(x-y)dx
使用格林理论将上面的线积分转化为面积分:
=(1/2)∫∫(S)[∂(x+y)/∂x-∂(x-y)/∂y]dxdy
=(1/2)∫∫(S)(1+1)dxdy=(1/2)∫∫(S)(2)dxdy
=∫∫(S)dxdy
上面的面积分积分就是这个圆的面积。由于这个圆的半径是2,所以,其面积为πr²=π2²=4π。
令(x-1)/2=cost,(y+1)/2=sint,得:
x=1+2cost,y=-1+2sint,dx=-2sintdt,dy=2costdt,代入积分式得:
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=(下限0,上限2π)∫[4(cost+sint)cost-4(1+cost-sint)sint]dt/(4-2)
=(下限0,上限2π)∫2(1-sint)dt=4π
2. 使用格林理论。
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2] ...由于圆周是(x-1)²+(y+1)²=4。在圆的周边线上积分时,上面分母中的(x-1)²+(y+1)²=4。所以:
∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=∫(L) (x+y)dy+(x-y)dx/(4-2)
=(1/2)∫(L) (x+y)dy+(x-y)dx
使用格林理论将上面的线积分转化为面积分:
=(1/2)∫∫(S)[∂(x+y)/∂x-∂(x-y)/∂y]dxdy
=(1/2)∫∫(S)(1+1)dxdy=(1/2)∫∫(S)(2)dxdy
=∫∫(S)dxdy
上面的面积分积分就是这个圆的面积。由于这个圆的半径是2,所以,其面积为πr²=π2²=4π。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询