已知函数f(x)=-x3+3x2+9x+a (1)求f(x)的单调递减区间; (...
已知函数f(x)=-x3+3x2+9x+a(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求a的值并求它在[-2,2]上的最小值....
已知函数f(x)=-x3+3x2+9x+a (1)求f(x)的单调递减区间; (2)若f(x)在区间[-2,2]上的最大值为20,求a的值并求它在[-2,2]上的最小值.
展开
1个回答
展开全部
(I)f′(x)=-3x2+6x+9.
令f′(x)f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
令f′(x)f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询