∫dx/{[(x+1)^2][(x-1)^4]}^(1/3)的不定积分积分

 我来答
解明市问芙
2019-09-09 · TA获得超过1122个赞
知道小有建树答主
回答量:1422
采纳率:100%
帮助的人:6.1万
展开全部
∫dx/[(x+1)²(x-1)⁴]^(1/3)的不定积分积分
原式=∫dx/{[(x+1)^(2/3)][(x-1)^(4/3)]}
=∫dx/{[(x+1)^(2/3)][(x-1)^(-2/3)](x-1)²}
=∫{[(x-1)/(x+1)]^(2/3)}dx/(x-1)²
=-(1/2)∫{(x+1)/(x-1)]^(-2/3)}d[(x+1)/(x-1)]
=-(1/2)(3)[(x+1)/(x-1)]^(1/3)+C
=-(3/2)[(x+1)/(x-1)]^(1/3)+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式