关于初二全等三角形的问题
3个回答
展开全部
三角形全等的条件: 1、全等三角形的对应角相等。 2、全等三角形的对应边相等 3、全等三角形的对应顶点相等。 4、全等三角形的对应边上的高对应相等。 5、全等三角形的对应角平分线相等。 6、全等三角形的对应中线相等。 7、全等三角形面积相等。 8、全等三角形周长相等。 9、全等三角形可以完全重合。 三角形全等的方法: 1、三边对应相等的两个三角形全等。(SSS) 2、两边和它们的夹角对应相等的两个三角形全等。(SAS) 3、两角和它们的夹边对应相等的两个三角形全等。(ASA) 4、有两角及其一角的对边对应相等的两个三角形全等(AAS) 5、斜边和一条直角边对应相等的两个直角三角形全等。(HL)
S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。 S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。 A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。 A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。 R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形: A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。 A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。
其实全等三角形很简单,只要做题做多了,反应速度就会提升
S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。 S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。 A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。 A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。 R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形: A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。 A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。
其实全等三角形很简单,只要做题做多了,反应速度就会提升
展开全部
找个例子推翻它不就结了?:例如:两个角度分别是30° ,60° ,90° 的直角三角形。
其中一个斜边为2,另一个30° 角对应的直角边也为2,其斜边为4。
这两个三角形就不全等 ,它们只是相似三角形.
所以,两个角和一对边对应相等的两个三角形全等错误。
如果改一下,两个角和所夹一条边对应相等的两个三角形全等就是正确的,
其中一个斜边为2,另一个30° 角对应的直角边也为2,其斜边为4。
这两个三角形就不全等 ,它们只是相似三角形.
所以,两个角和一对边对应相等的两个三角形全等错误。
如果改一下,两个角和所夹一条边对应相等的两个三角形全等就是正确的,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-09-21
展开全部
因为不是对应的两个角 要是不对应的话 就不相等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询