在数列{an}中,a1=1,a2=5,an+2=4an+1-4an,n∈N*
(1)设bn=am+1-2an,求证:{bn}是等比数列(2)求{an}的通项公式老师写的提示:(1)∵a1=1,a2=5∴bn+1/bn=an+2+2an+1/am+1...
(1)设bn=am+1-2an,求证:{bn}是等比数列
(2)求{an}的通项公式
老师写的提示:(1)∵a1=1,a2=5
∴bn+1/bn=an+2+2an+1/am+1-2an
=4an+2-4an-2an+1/an+1-2an
= 展开
(2)求{an}的通项公式
老师写的提示:(1)∵a1=1,a2=5
∴bn+1/bn=an+2+2an+1/am+1-2an
=4an+2-4an-2an+1/an+1-2an
= 展开
展开全部
由方程式可得: An+2 - 2An+1 = 2An+1 - 4An = 2( An+1 - 2An )
也即 Bn+1 / Bn = (An+2 - 2An+1) / (An+1 - 2An) = 2
B1 = A2 - 2A1 = 5-2 = 3
所以: Bn = 3 * 2^(n-1)
//////////////////////////////////
Bn = An+1 - 2An = 3 * 2^(n-1)
所以 An+1 = 3 * 2^(n-1) + 2An
= 3 * 2^(n-1) + 2[ 3 * 2^(n-2) + 2An-1 ]
= 3 * 2^(n-1) + 3 * 2^(n-1) + 4An-1
= 3 * 2^(n-1) + 3 * 2^(n-1) + 3 * 2^(n-1) + 8An-2
=...
= n * 3 * 2^(n-1) + 2^n * A1
= (3n + 2A1) * 2^(n-1)
= (3n + 2) * 2^(n-1)
所以 An = (3n - 1) * 2^(n-2)
也即 Bn+1 / Bn = (An+2 - 2An+1) / (An+1 - 2An) = 2
B1 = A2 - 2A1 = 5-2 = 3
所以: Bn = 3 * 2^(n-1)
//////////////////////////////////
Bn = An+1 - 2An = 3 * 2^(n-1)
所以 An+1 = 3 * 2^(n-1) + 2An
= 3 * 2^(n-1) + 2[ 3 * 2^(n-2) + 2An-1 ]
= 3 * 2^(n-1) + 3 * 2^(n-1) + 4An-1
= 3 * 2^(n-1) + 3 * 2^(n-1) + 3 * 2^(n-1) + 8An-2
=...
= n * 3 * 2^(n-1) + 2^n * A1
= (3n + 2A1) * 2^(n-1)
= (3n + 2) * 2^(n-1)
所以 An = (3n - 1) * 2^(n-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询