求证:f(x)=(根号(X的平方+1))-x在R上递减
1个回答
展开全部
f(x)=√(x²+1)-x
设x1,x2∈R,x2>x1
f(x2)-f(x1)=√(x2²+1)-x2-√(x1²+1)+x1
=√(x2²+1)-√(x1²+1)-(x2-x1)
=[(x2²-x1²)/(√(x2²+1)+√(x1²+1))]-(x2-x1)
=(x2-x1){[(x1+x2)/(√(x2²+1)+√(x1²+1))]-1}
∵√(x2²+1)>x2,√(x1²+1))]>x1
∴√(x2²+1)+√(x1²+1))>x1+x2
有)(x1+x2)/(√(x2²+1)+√(x1²+1))<1
[(x1+x2)/(√(x2²+1)+√(x1²+1))]-1<0,x2-x1>0
∴f(x2)-f(x1)<0
结论成立
设x1,x2∈R,x2>x1
f(x2)-f(x1)=√(x2²+1)-x2-√(x1²+1)+x1
=√(x2²+1)-√(x1²+1)-(x2-x1)
=[(x2²-x1²)/(√(x2²+1)+√(x1²+1))]-(x2-x1)
=(x2-x1){[(x1+x2)/(√(x2²+1)+√(x1²+1))]-1}
∵√(x2²+1)>x2,√(x1²+1))]>x1
∴√(x2²+1)+√(x1²+1))>x1+x2
有)(x1+x2)/(√(x2²+1)+√(x1²+1))<1
[(x1+x2)/(√(x2²+1)+√(x1²+1))]-1<0,x2-x1>0
∴f(x2)-f(x1)<0
结论成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询