如图(1),小明在研究正方形ABCD的有关问题时,得出:“在正方形ABCD中,如果点E是CD的中点,点F是BC边上

如图(1),小明在研究正方形ABCD的有关问题时,得出:“在正方形ABCD中,如果点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD,那么EF垂直AE”。他又将... 如图(1),小明在研究正方形ABCD的有关问题时,得出:“在正方形ABCD中,如果点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD,那么EF垂直AE”。他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图2,图3,图4),其他条件不变,发现仍有"EF垂直AE"结论。

你同意小明的观点吗,若同意,请结合图4加以证明,若不同意请说出理由
展开
fanjialin102
2012-05-20
知道答主
回答量:65
采纳率:0%
帮助的人:17.5万
展开全部
解:同意.

方法一:

证明:如图(略)①,延长AE交BC的延长线于点G.

∵四边形ABCD是平行四边形,

∴AD//BC, ∴∠D=∠ECG,

∵E为DC的中点, ∴DE=EC,

又∵∠DEA=∠CEG, ∴△ADE≌△GCE(ASA)

∴AE=GE, ∠DAE=∠G

∵∠FAE=∠DAE, ∴∠FAE=∠G.

∴FA=FG.

∴EF⊥AE

方法二:

证明: 如图②,在AF上截取AG=AD,连接EG、GC.

∵∠FAE=∠EAD,AE=AE, ∴△AEG≌△AED(SAS).

∴DE=GE, ∠AGE=∠D, ∠1=∠2.

∵点E是DC的中点,∴EC=DE, ∴EC=GE.

∵四边形ABCD是平行四边形, ∴AD//BC, ∴∠BCD+∠D=180°.

∵∠EGF+∠AGE=180°, ∴∠BCD=∠EGF

∵EG=EC, ∴∠EGC=∠ECG. ∴∠FGC=∠FCG. ∴GF=FC.

又∵EF=EF, ∴△GEF≌△CEF(SSS)

∴∠3=∠4.

∴∠AEF=∠2+∠3=(∠1+∠2+∠3+∠4)=×180°=90°.

∴EF⊥AE
匿名用户
2010-09-23
展开全部
我也不会
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式