椭圆的准线怎么求?
1个回答
展开全部
当动点P到定点F(焦点)和到定直线X=Xo的距离之比为离心率时,该直线便是椭圆的准线。
准线方程 :x=a^2/c x=-a^2/c
准线的性质:
圆锥曲线上任意一点到一焦点的距离与其对应的准线(同在Y轴一侧的焦点与准线)对应的距离比为离心率。椭圆上任意一点到焦点距离与该点到相应准线距离的比等于离心率e。
扩展资料
准线推导
设椭圆方程为x2/a2+y2/b2=1,焦点为F1(c,0),F2(-c,0)(c>0)
设A(x,y)为椭圆上一点
则AF1=√[(x-c)2+y2]
设准线为x=f
则A到准线的距离L为│f-x│
设AF1/L=e则
(x-c)2+y2=e2(f-x)2
化简得(1-e2)x2-2xc+c2+y2-e2f2+2e2fx=0
令2c=2e2f
则f=c/e2
令该点为右顶点则(c/e2-a)e=a-c
当e=c/a时上式成立
故f=a2/c
则方程为(1-e2)x2+y2=e2f2-c2
与原椭圆方程对比则
a2=(e2f2-c2)/(1-e2),b2=e2f2-c2
a2=(c2/e2-c2)/(1-e2),b2=c2/e2-c2
a2-b2=(c2/e2-c2)e2/(1-e2)=c2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |