数学题,急急急急急急急急
如图,在△ABC中,已知AB>BC,∠B=60°,∠BAC和∠ACB的平分线AE、CF相较于G。求证:AC=FA=EC。1楼回答的有点乱...
如图,在△ABC中,已知AB>BC,∠B=60°,∠BAC和∠ACB的平分线AE、CF相较于G。
求证:AC=FA=EC。
1楼回答的有点乱 展开
求证:AC=FA=EC。
1楼回答的有点乱 展开
1个回答
展开全部
证明:分别向边AB、BC、AC做垂线,垂点为M、N、O,连接BG。
因为∠B=60°,故又平分线AE、CF,则∠AGC=120°;
且垂线GM和GN,在四边形BMGN中,则∠MGN=180°-∠B=120°;
对角线AE和CF,则∠FGE=∠AGC;
于是有:∠FGM=∠FGE-∠MGE=∠MGN-∠MGE=∠EGN----------------(1);
角平分线点到两边距离公式得:GM=GN;------------(2);
∠FMG=∠GNE=90°-------------------------(3);
在三角形FMG和三角形GEN中,由(1)(2)(3)可知(边角边):
两个三角形全等,则FM=EN;——(0)
又CN=CO,AO=AM且AC=AO+OC;
又AM=AF+FM,即AF=AM-FM——(4);和CE=CN+EN——(5)
由(4)+(5)且(0)得:AF+CE=AM-FM+CN+EN=AM+CN=AO+OC=AC,即证得:
AF+CE=AC
因为∠B=60°,故又平分线AE、CF,则∠AGC=120°;
且垂线GM和GN,在四边形BMGN中,则∠MGN=180°-∠B=120°;
对角线AE和CF,则∠FGE=∠AGC;
于是有:∠FGM=∠FGE-∠MGE=∠MGN-∠MGE=∠EGN----------------(1);
角平分线点到两边距离公式得:GM=GN;------------(2);
∠FMG=∠GNE=90°-------------------------(3);
在三角形FMG和三角形GEN中,由(1)(2)(3)可知(边角边):
两个三角形全等,则FM=EN;——(0)
又CN=CO,AO=AM且AC=AO+OC;
又AM=AF+FM,即AF=AM-FM——(4);和CE=CN+EN——(5)
由(4)+(5)且(0)得:AF+CE=AM-FM+CN+EN=AM+CN=AO+OC=AC,即证得:
AF+CE=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询